
PLFS: The Parallel
Log-Structured

Filesystem
Milo Polte

John Bent, Garth Gibson, Gary Grider, Ben McClelland,
Paul Nowoczynski, James Nunez, Meghan Wingate

Carnegie Mellon Parallel Data Laboratory
Los Alamos National Laboratory

Pittsburgh Supercomputing Center

PLFS: A Checkpoint Filesystem for Parallel Applications

SVD09

Problem

John Bent*, Garth Gibson†, Gary Grider*, Ben McClelland*, Paul Nowoczynski‡,

James Nunez*, Milo Polte†, Meghan Wingate*

*Los Alamos National Laboratory †Carnegie Mellon University ‡Pittsburgh Supercomputing

• Many important scientific applications create

checkpoints using small, strided, concurrent writes to a

shared file (N-1 checkpointing)

• Filesystems perform best on non-concurrent sequential

workloads, such as N-N checkpointing

• Small-strided writes to a shared file often suffer from

seeks and false sharing

• Unfortunately, we can't change the applications, but we

can modify our filesystems

Previous Work

• "Log-structured Files for Fast Checkpointing"

• CMU students modified a parallel filesystem (PVFS2) to

write shared files in a log representation

• Required server modification

• Only works with one filesystem

• All writes are appended so no seeks, but clients still

concurrently access a single file

PLFS – Parallel Log-Structured File System

• A project developing a filesystem level improvement to

N-1 checkpointing, led by John Bent (LANL)

• FUSE based filesystem mounted on top of any existing

parallel filesystem on clients

• Decouples a concurrent N-1 checkpoint into a

non-concurrent N-N checkpoint

• Redirects strided writes from multiple processes

accessing a single file to sequential writes to data logs

and index files

Layout of a PLFS Container

PLFS Speedup

• 2x – 150x speedups for important HPC applications at

LANL scale!

Future Work

• Metadata optimizations

• Read path optimizations

• Currently can perform poorly if read and write access

patterns differ

• Metadata servers could keep in-memory maps of the

indices

• Specialization for patterns other than N-1

• PLFS-like approaches to distribute directories on

filesystems that store each on a single metadata server

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1000 2000 3000 4000 5000 6000 7000 8000

W
ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Processes

N-N, PanFS

N-1, PanFS

PanFS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40

W
ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Processors

N-N
N-1

GPFS

Checkpoint Bandwidth

Buffer:

0 50 100

“Write 50 bytes at offset 100”

Log
Representation:

pwrite(le, bu er[100], 50, 100);
pwrite(le, bu er, 50, 0);
pwrite(le, bu er[50], 50, 50);

“Write 50 bytes at offset 0”

“Write 50 bytes at offset 50”

Application logical view matches PLFS virtual view

/foo

host1 host2 host3

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx

data.132 data.148

indx

Each process writes its data to PLFS in a strided N-1 pattern

PLFS writes the file as multiple log files within a container on the backing filesystem

/foo/

PLFS

 1

 10

 100

 1000

BTIO Chombo FLASH LANL 1 LANL 2 LANL 3 QCD

S
p

e
e

d
u

p
 (

X
)

23X

7X

150X

2X

5X

28X

83X

with information from LANL Technical Release LA-UR 09-02117

IRHPIT
INSTITUTE FOR REL IABLE

H I G H P E R F O R M A N C E

INFORMATION TECHNOLOGY

LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104

 Milo Polte © November 09

Computational Science = Always Hungry

• LANL’s Roadrunner

• Petaflop machine, tens of thousands of cores

• Building bigger machines isn’t free

• Higher processor count

• More Failures

• Bigger, more frequent checkpoints

• Also bigger simulation/visualization output

• Having time to compute requires fast I/O!

2

 Milo Polte © November 09

Compute

Lifetime of a Scientific App

3

Start Check
point

Compute

Crash
Check
point

Compute

Compute

....Restart

 Milo Polte © November 09

Parallel Apps = Parallel Writes
• Writes are concurrent

• Tens of thousands of concurrent writes

• Challenge for a filesystem

• Two common write patterns

• N-N, N-1

4

 Milo Polte © November 09

N-N File IO
Node 1 Node 2 Node 3

PARALLEL FILESYSTEM
(Multiple Files)

5

 Milo Polte © November 09

N-1 File IO
Node 1 Node 2 Node 3

PARALLEL FILESYSTEM (Single File)

6

 Milo Polte © November 09

N-1 Concurrent Writing Doesnʼt Scale

7

LANL
// FS

10 MB/s

3.3 GB/s

330X

N-N
N-1

Write bandwidth of LANL’s MPI-IO-TEST

 Milo Polte © November 09

N-1: Whatʼs the hold up?

8

• Contention within a single object

• Locking, safety

• Small strides, small writes

• May be misaligned

• Stripe alignment

• RAID parity read-modify-write disaster

 Milo Polte © November 09

• At HPC sites (LANL) many old codes use N-1

• “Untouchables”

• Newly written codes still choosing N-1

• 2 of 8 open science applications on Roadrunner

• Common scientific formatting libraries are N-1

• Many benchmarks as well

• Half the PIO Benchmarking Consortium

• Designed to represent real apps

9

Ditch N-1? Not so fast....

 Milo Polte © November 09

How can we convert N-1 to N-N?
Node 1 Node 2 Node 3

PARALLEL FILESYSTEM
10

Interposition Layer

?

 Milo Polte © November 09

How can we convert N-1 to N-N?
Node 1 Node 2 Node 3

PARALLEL FILESYSTEM
11

Interposition Layer

?
Our solution:

PLFS

 Milo Polte © November 09

Outline

• Motivation

• PLFS Design

• Evaluation

• Write Speeds in PLFS

• Read Speeds in PLFS

• Metadata Rates in PLFS

• Future Work

• Conclusions

12

 Milo Polte © November 09

Design of a checkpoint interposition layer

13

Requirement Solution

Extreme parallelism

‣
Decouple writers to individual files

Fast, efficient writes Write in a log structured manner

No application changes Expose POSIX filesystem interface

Portable across filesystems Implement as a ‘stackable’ filesystem

Low comp. node footprint Use existing parallel FS storage

 Milo Polte © November 09

Using PLFS

14

• PLFS is implemented as a FUSE filesystem

• Mounted on top of an existing parallel filesystem

• Example: On every node, mount as

$ plfs ~/mnt/plfs -plfs_backend=/mnt/scratch

• Checkpoints write to ~/mnt/plfs

• PLFS stores data in parallel filesystem /mnt/scratch

Applications write checkpoints to PLFS the
same as they wrote to the parallel filesystem

 Milo Polte © November 09

PLFS Decoupling

15

foo/

host1/ host2/ host3/
data.131

index

data.132 data.279 data.281

index
data.132 data.148

index

• Processes open a file ‘foo’ in PLFS mount point

• PLFS mkdir’s directory ‘foo/’ in underlying filesystem

• PLFS mkdir’s ‘foo/<hostname>/’ in underlying filesystem

• Processes start writing to ‘foo’ in PLFS

• PLFS opens a data log per writer, begins appending

• PLFS writes a index file per host

 Milo Polte © November 09

Review: Decoupled Layout

PLFS Virtual Layer

foo

host1

foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131
index

data.132 data.279 data.281

index
data.132 data.148

index

Underlying Parallel Filesystem

host2 host3

16

 Milo Polte © November 09

Outline

• Motivation

• PLFS Design

• Evaluation

• Write Speeds in PLFS

• Read Speeds in PLFS

• Metadata Rates in PLFS

• Future Work

• Conclusions

17

 Milo Polte © November 09

PLFS converts N-1 to N-N speeds
Write bandwidth of LANL’s MPI-IO-TEST

LANL
// FS

18

N-N

N-1 direct to // FS

N-N
N-1 to PLFS
N-1 direct to // FS

 Milo Polte © November 09

Writes Evaluated Extensively
• GPFS, Lustre, Panfs filesystems

• Applications and IO Kernels

• Synthetic Checkpoint Benchmarks

19

PLFS: A Checkpoint Filesystem for Parallel Applications

SVD09

Problem

John Bent*, Garth Gibson†, Gary Grider*, Ben McClelland*, Paul Nowoczynski‡,

James Nunez*, Milo Polte†, Meghan Wingate*

*Los Alamos National Laboratory †Carnegie Mellon University ‡Pittsburgh Supercomputing

• Many important scientific applications create

checkpoints using small, strided, concurrent writes to a

shared file (N-1 checkpointing)

• Filesystems perform best on non-concurrent sequential

workloads, such as N-N checkpointing

• Small-strided writes to a shared file often suffer from

seeks and false sharing

• Unfortunately, we can't change the applications, but we

can modify our filesystems

Previous Work

• "Log-structured Files for Fast Checkpointing"

• CMU students modified a parallel filesystem (PVFS2) to

write shared files in a log representation

• Required server modification

• Only works with one filesystem

• All writes are appended so no seeks, but clients still

concurrently access a single file

PLFS – Parallel Log-Structured File System

• A project developing a filesystem level improvement to

N-1 checkpointing, led by John Bent (LANL)

• FUSE based filesystem mounted on top of any existing

parallel filesystem on clients

• Decouples a concurrent N-1 checkpoint into a

non-concurrent N-N checkpoint

• Redirects strided writes from multiple processes

accessing a single file to sequential writes to data logs

and index files

Layout of a PLFS Container

PLFS Speedup

• 2x – 150x speedups for important HPC applications at

LANL scale!

Future Work

• Metadata optimizations

• Read path optimizations

• Currently can perform poorly if read and write access

patterns differ

• Metadata servers could keep in-memory maps of the

indices

• Specialization for patterns other than N-1

• PLFS-like approaches to distribute directories on

filesystems that store each on a single metadata server

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1000 2000 3000 4000 5000 6000 7000 8000

W
ri
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

Number of Processes

N-N, PanFS

N-1, PanFS

PanFS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40

W
ri
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

Number of Processors

N-N
N-1

GPFS

Checkpoint Bandwidth

Buffer:

0 50 100

“Write 50 bytes at offset 100”

Log
Representation:

pwrite(le, bu er[100], 50, 100);
pwrite(le, bu er, 50, 0);
pwrite(le, bu er[50], 50, 50);

“Write 50 bytes at offset 0”

“Write 50 bytes at offset 50”

Application logical view matches PLFS virtual view

/foo

host1 host2 host3

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx

data.132 data.148

indx

Each process writes its data to PLFS in a strided N-1 pattern

PLFS writes the file as multiple log files within a container on the backing filesystem

/foo/

PLFS

 1

 10

 100

 1000

BTIO Chombo FLASH LANL 1 LANL 2 LANL 3 QCD

S
p

e
e

d
u

p
 (

X
)

23X

7X

150X

2X

5X

28X

83X

with information from LANL Technical Release LA-UR 09-02117

IRHPIT
INSTITUTE FOR REL IABLE

H I G H P E R F O R M A N C E

INFORMATION TECHNOLOGY

12X

5-150x improvements

Bigger improvements
with more writers

 Milo Polte © November 09

Alignment and Write Size

• Small strided writes induce contention

• Hurt caching, buffering

• Misaligned writes use resources inefficiently

• False sharing

• RAID parity read-modify-write problem

20

 Milo Polte © November 09

LBNLʼs PatternIO

Without
PLFS

Stripe aligned

64k block
aligned

Unaligned

PLFS makes alignment and
blocksize irrelevant!

21

With PLFS

 Milo Polte © November 0922

2X 4X

Bulkio was a 10k line
library written just
to improve this app

PLFS is 3k lines,
benefits from the
FUSE approach

LANL App that
simulates wiping out
the dinosaurs with a

meteor

“Zero-Effort” Improvement For Real Apps

 Milo Polte © November 09

Outline

• Motivation

• PLFS Design

• Evaluation

• Write Speeds in PLFS

• Read Speeds in PLFS

• Metadata Rates in PLFS

• Future Work

• Conclusions

23

 Milo Polte © November 09

What about the read path?

24

• Checkpoint is ‘write once, read maybe’

• PLFS readers read in indices, remap requests

• We’re writing in a log structured way

• Can’t this hurt reads?

 Milo Polte © November 09

Read Speed Improved by PLFS?

25

Read bandwidth of LANL’s MPI-IO-TEST

(falloff due to strong scaling,
shrinking log files)

 Milo Polte © November 09

Read Speed Explanation (I)

26

• Checkpoints don’t write randomly

• Examined write traces of evaluated applications

• In every case, processes wrote to monotonically
increasing logical offsets

• Creates offset-sorted logs

 Milo Polte © November 09

Read Speed Explanation (II)
• Checkpoints aren’t read randomly either

• Restart and archive read sequentially

• PLFS reads from many files at once

• Gets more filesystem resources than N-1

• Next byte always in read-ahead buffer of some file

27

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

Log 1

Log 2

Log 3

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

1 2

Log 1

Log 2

Log 3

Client
Memory

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

1 2 3 4 5

Log 1

Log 2

Log 3

Client
Memory

Client
Memory

Fig. 1. Progress of sequential reading of a checkpoint log file

spread I/O across multiple servers and spindles, parallel
filesystems still must deal with contention within in a sin-
gle file object or stripe. So it is unsurprising that PLFS’s
log-structured writing has achieved high write performance
improvements on real applications and checkpoint bench-
marks [8]. However, for pathological combinations of write
and read patterns (for example, a random write pattern read
back sequentially), a log file format is expected to exhibit
poor read performance due to the additional seeks. Surprisely,
this expected poor read performance was not borne out during
PLFS experiments.

To understand why PLFS performs so well on its read
path, it helps to understand that while reading sequentially
from a log file format consisting of random writes can be
slow, the checkpointing and scientific applications that write
to PLFS do so in a structured manner. An analysis of the
trace repository of checkpoints run through PLFS available
on the web [14] reveals two important observations. First, the
multiple processes writing a checkpoint do interleave their
writes with one another; this is the behavior that allows
middleware layers such as PLFS and ADIOS to improve write
bandwidth. The second observation is that all writes from
each individual process are strictly increasing in their logical
offsets.

Figure 1 is a graphical representation of three time steps of a
single client reading sequentially from a PLFS checkpoint file
created by three writing processes and stored as log structured
files on an underlying parallel filesystem. Squares represent
segments of client memory or entries in a log file, and the
numbers inside correspond to their logical offset. Grey boxes
represent the parallel filesystem’s read-ahead buffers for each
log. Note that each log file is monotonically increasing in
logical offset, and the next request from the client is always
at the front of one of the log files. Due to this property, as
the client continues reading from the checkpoint file, rather
than the log format resulting in expensive seeks, the read
ahead buffers will slide forward through the log files, reading
them sequentially in parallel. ADIOS’s BP format is somewhat
different, but by storing variables together in log formatted
files, it too allows for efficient read back in an analogous
manner.

Below we discuss how this property allows for efficient
read-back of PLFS checkpoint files on uniform and non-
uniform restart, by examining one checkpoint benchmark: The
mpi_io_test benchmark from LANL [15]. This benchmark
is designed to represent a simple checkpoint I/O workload.
In the examples below, it is configured to write a single 20
GB file in 47KB strided writes from a varying number of
processes on the LANL Roadrunner system. One implication
of this workload is that as the number of writers grows, the
amount written by each writer (and the corresponding size of
the PLFS log file) shrinks. We write both to PLFS and to the
underlying parallel filesystem directly and compare the results.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800

R
ea

d
Ba

nd
w

id
th

 (M
B/

s)

Number of Writers

With PLFS
Without PLFS

Fig. 2. Uniform Reads for PLFS

A. Uniform Restart in PLFS

Reading back a checkpoint file with the same number of
processes is highly efficient in PLFS. During a checkpoint
restart, each reading process will read back one writing pro-
cess’s data from the checkpoint in the same pattern in which
it was written. In the case of PLFS, since the checkpoint was
written in per-process monotonically increasing offsets, each
reader will access a single log structured file in sequential
order. The scenario is similar to that shown in Figure 1, except
with multiple clients each reading individual log files allowing

A client reading sequentially from offset-sorted logs

 Milo Polte © November 09

Outline

• Motivation

• PLFS Design

• Evaluation

• Write Speeds in PLFS

• Read Speeds in PLFS

• Metadata Rates in PLFS

• Future Work

• Conclusions

28

 Milo Polte © November 09

Metadata operations performance

• Recall: A PLFS file is really a directory

• Chmods, Chowns, Chgrps, Utimes, etc.

• Use the container or a special access file

• Stat can use access file for permissions, ownership

• What about size? Modified time?

• Have to stat every data log?

• Expensive with thousands of independent logs!

29

 Milo Polte © November 09

Stat Optimization

• Containers have special metadata subdirectory

• On close, writers make metadata/host.B.L.T

• B = blocks of capacity

• L = last offset (i.e. file size)

• T = timestamp of last write (mtime)

• Stat can now be implemented with a readdir

• If writers are still open, have to use slow path

30

 Milo Polte © November 09

Stat Rates

31

 Milo Polte © November 09

Remaining Challenges and Future Work

• First open invokes thousands of sub-file creates

• Index reprocessing overhead in read-write mode

• Odd read patterns? Data analysis?

• Faster stat of open files

• ls -l of growing file

32

 Milo Polte © November 09

Future Work: PLFS + HDFS
• ‘Cloud’ filesystems gaining prevalence

• High resilience but often lack important semantics

• HDFS:

• No concurrent writers

• No reopen for write

• Could be achieved by ‘decoupling’ every open

• Use PLFS to add semantics to Cloud Filesystems

• See me at poster

33

 Milo Polte © November 09

Conclusions
• Drastically improves performance of N-1

checkpointing

• Works on multiple parallel filesystems

• No application, filesystem modifications

• Does not penalize checkpoint reading

• Potential to enrich semantics of cloud filesystems

• Downloadable at:
http://sourceforge.net/projects/plfs/

34

